目录
硕士报考志愿采集    更新日期:2025年3月6日
姓 名 周沧琦 性 别
出生年月 1986年1月 籍贯 西安
民 族 汉族 政治面貌 中国共产党党员
最后学历 博士研究生 最后学位 工学博士
技术职称 副教授 导师类别 硕士生导师
导师类型 校内 兼职导师
行政职务 Email cqzhou@njust.edu.cn
工作单位 南京理工大学计算机学院 邮政编码
通讯地址
单位电话
个人主页
指导学科
学科专业(主) 0835|软件工程 招生类别 硕士 所在学院 计算机科学与工程学院
研究方向

自然语言处理:大语言模型应用;大语言模型幻觉检测及缓解;文本信息抽取;检索增强生成技术;多模态生成及数据治理

图挖掘:图表示学习;图神经网络;图对比学习;社交网络及信息传播;网络社区发现;图语言模型

要求欢迎对大模型、自然语言处理、图学习等相关方向感兴趣;具有较好的编程能力及数学基础;致力于钻研有用的(有产业落地价值)、或有趣的(有一定科学或社会价值)科研问题的同学报考硕士

特色:本人长期致力于所研究问题在金融、互联网、工业等领域的实际落地,长期参与创业孵化和校企合作,产业经验丰富

名额:2025年仍有软件工程(学硕)电子信息(专硕)1-2个接收名额

 

工作经历

2022.06至今,南京理工大学计算机学院,副教授

2017.11--2022.05,南京理工大学计算机学院,讲师

2015.11--2017.11,清华大学自动化系,博士后

教育经历

2008.09--2015.07,清华大学自动化系,工学博士

2004.09--2008.07,北京理工大学自动控制系,工学学士

社会、学会及学术兼职

会员

IEEE,CCF

期刊审稿人

Physica A: Statistical Mechanics and its Applications

Knowledge-based Systems

Neural Networks

IEEE Transactions on Automation Science and Engineering

IEEE Transactions on Knowledge and Data Engineering

会议PC Member

ACL Demo Track (2022, 2023)

AAAI (2023)

 

科研项目

国家自然科学基金青年项目,基于高阶张量表示和压缩谱嵌入的多层异质网络社区发现方法研究,主持

江苏省自然科学基金青年项目,基于图滤波的动态二部网络社区发现方法研究,主持

南京理工大学自主科研应急专项,基于确诊病例行踪数据的重叠社区异质网络病毒传播模型,主持

某企业横向课题,大模型应用产品智能化功能开发,主持

某企业横向课题,算法使用手册智能生成技术研究,主持

某企业横向课题,检索增强生成技术应用研究,主持

发表论文

已发表或录用的第一作者及通讯作者论文:

2025

[1] Yiqian Qin, Cangqi Zhou*, Jing Zhang, Dianming Hu. Document-level Event Argument Extraction with Key Sentence Selection and Role Ontology. The 17th International Conference on Machine Learning and Computing (ICMLC 2025), Guangzhou, China. February 14-17, 2025. Forthcoming.

[2] Mengyao He, Cangqi Zhou*, Jing Zhang, Dianming Hu. Homophily-enhanced Graph Structure Learning under Adversarial Contrastive Learning Framework. The 17th International Conference on Machine Learning and Computing (ICMLC 2025), Guangzhou, China. February 14-17, 2025. Forthcoming.

[3] Zhijian Wang, Cangqi Zhou*, Jing Zhang, and Dianming Hu. FARE: Factual Alignment for Reliable Evaluation in Text Summarization. The 17th International Conference on Machine Learning and Computing (ICMLC 2025), Guangzhou, China. February 14-17, 2025. Forthcoming.

2024

[1] Tong Lin, Cangqi Zhou*, Hui Chen, Qianmu Li, Dianming Hu. Multi-level Disentangled Contrastive Learning on Heterogeneous Graphs. The 16th International Conference on Machine Learning and Computing (ICMLC 2024), Shenzhen, China. February 2-5, 2024. Forthcoming.

[2] Cangqi Zhou, Hui Chen, Jing Zhang*, Qianmu Li, Dianming Hu. Quintuple-based Representation Learning for Bipartite Heterogeneous Networks. ACM Transactions on Intelligent Systems and Technology (TIST). Forthcoming.

2023

[1] Yingjie Xie, Qi Yan, Cangqi Zhou*, Jing Zhang, Dianming Hu. Heterogeneous Graph Contrastive Learning with Dual Aggregation Scheme and Adaptive Augmentation. The 7th International Joint Conference on Web and Big Data (APWeb-WAIM-2023), Wuhan, China. October 6-8, 2023. Forthcoming.

[2] Peishuo Liu, Cangqi Zhou*, Xiao Liu, Jing Zhang, Qianmu Li. Multi-Granularity Contrastive Learning for Graph with Hierarchical Pooling. The 32nd International Conference on Artificial Neural Networks (ICANN-2023), Heraklion city, Crete, Greece. September 26-29, 2023.

[3] Peishuo Liu, Canggi Zhou*, Jing Zhang, Qianmu li, and Dianming Hu. Hierarchical Graph ContrastiveLearning via Debiasing Noise Samples with Adaptive Repelling Ratio. The 23rd IEEE International Conferenceon Data Mining (ICDM-2023), Shanghai, China. December 1-4, 2023.

2022

[1] Chen Hou, Cangqi Zhou*, Chu-Ge Wu, Rui Cong, Kun Li. Optimization of Cloud-Based Multi- Agent System for Trade-Off Between Trustworthiness of Data and Cost of Data Usage. IEEE Transactions on Automation Science and Engineering (T-ASE), Early Access. Nov. 30, 2022.

[2] Chen Hou, Cangqi Zhou*, Chu-ge Wu, Rui Cong, Kun Li. Optimal Model of Cloud-Based Multi-Agent System for Trade-off Between Trustworthiness of Data and Cost of Data Usage. IEEE 18th International Conference on Automation Science and Engineering (CASE-2022), Mexico City, Mexico. Aug. 20-24, 2022. 

[3] Cangqi Zhou, Yuxiang Wang, Jing Zhang*, Jiqiong Jiang, Dianming Hu. End-to-end modularity-based community co-partition in bipartite networks. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM-2022), pp. 2711-2720, Atlanta, GA, USA. Oct. 17-21, 2022.

[4] Yuxiang Wang, Cangqi Zhou*, Jing Zhang, Qianmu Li. Attributed graph clustering with double contrastive projector. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN-2022), Padua, Italy. Jul. 18-23, 2022.

[5] Cangqi Zhou, Jing Zhang*, Kaisheng Gao, Qianmu Li, Dianming Hu, Victor S. Sheng. Bipartite network embedding with symmetric neighborhood convolution. Expert Systems with Applications, 198:116757. Jul. 2022.

[6] Cangqi Zhou, Sunyue Xu, Hao Ban, Jing Zhang*. Neural topic modeling with Gaussian mixture model and householder flow. In Proceedings of 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2022), Chengdu, China. May. 16-19, 2022.

[7] Cangqi Zhou, Hui Chen, Jing Zhang*, Qianmu Li, Dianming Hu. AngHNE: Representation learning for bipartite heterogeneous networks with angular loss. In Proceedings of the 15th International Conference on Web Search and Data Mining (WSDM-2022), pp. 1470–1478, Phoenix, Arizona, USA. Feb. 21-25, 2022. 

 

2021

[1] Cangqi Zhou, Jinling Shang, Jing Zhang*, Qianmu Li, Dianming Hu. Topic-attentive encoder-decoder with pre-trained language model for keyphrase generation. In Proceedings of the 21st International Conference on Data Mining (ICDM-2021), pp. 1529–1534, Auckland, New Zealand. Dec. 7-10, 2021.

[2] Jing Zhang*, Mengxi Li, Kaisheng Gao, Shunmei Meng, Cangqi Zhou*. Word and graph attention networks for semi-supervised classification. Knowledge and Information Systems (KAIS), 63:2841–2859. Nov. 2021.

[3] Cangqi Zhou, Hui Chen, Jing Zhang*, Qianmu Li, Dianming Hu, Victor S. Sheng. Multi-label graph node classification with label attentive neighborhood convolution. Expert Systems with Applications, 180:115063. Oct. 2021.

[4] Hui Chen, Cangqi Zhou*, Jing Zhang, Qianmu Li. Heterogeneous graph embedding based on edge-aware neighborhood convolution. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN-2021), Virtual. Jul. 18-22, 2021. 

 

Before 2020

[1] Cangqi Zhou, Hao Ban*, Jing Zhang, Qianmu Li, Yinghua Zhang*. Gaussian mixture variational autoencoder for semi-supervised topic modeling. IEEE Access, 8:106843–106854. Jun. 2020.

[2] Cangqi Zhou, Liang Feng, Qianchuan Zhao*. A novel community detection method in bipartite networks. Physica A: Statistical Mechanics and its Applications, 492:1679-1693. Feb. 2018.

[3] Cangqi Zhou, Qianchuan Zhao, Wenbo Lu. Cumulative dynamics of independent information spreading behaviour: A physical perspective. Scientific Reports, 7:5530. Jul. 2017.

[4] Cangqi Zhou, Qianchuan Zhao, Wenbo Lu. Impact of repeated exposures on information spreading in social networks. PLoS ONE, 10(10):e0140556. Oct. 2015.

[5] Cangqi Zhou, Qianchuan Zhao, Wenbo Lu. Modeling of the forwarding behavior in microblogging with adaptive interest. (in Chinese). Journal of Tsinghua University (Science and Technology), 55(11):1163-1170. Dec. 2015.

[6] Cangqi Zhou, Qianchuan Zhao. Efficient time series clustering and its application to social network mining. Journal of Intelligent Systems, 23(2):213-229. Feb. 2014.

[7] Cangqi Zhou, Qianchuan Zhao, Ruixi Yuan. An angle-based dissimilarity for accelerating the clustering of dynamic data in networks. 10th IEEE International Conference on Networking, Sensing and Control (ICNSC-2013), Evry, France. Apr. 10-12, 2013. 

 

科研创新

授权专利

一种基于层级化聚类的金融新闻流突发检测方法,发明专利,第一发明人,已授权

一种基于显著性信息门控机制的关键词生成方法,发明专利,第一发明人,已授权

 

教学活动

自然语言处理导论,本科生

算法设计与分析,本科生(辅修)

数据挖掘与大数据分析,研究生(英)

软件定义技术,研究生

指导学生情况

指导及协助指导研究生:

2021届:高凯升(协助)-> 百度

2022届:陈辉(协助)-> 字节

2023届:王毓祥 -> 武汉大学博士

2024届:胡莫闲 -> 中核刘培硕(协助)-> 南京大学博士林彤(协助)-> 海关谢英杰(协助)-> 华为

---------------

2025届:秦奕倩;王智健;贺梦瑶

2026届:张志冰;张志强;李海江