目录
硕士报考志愿采集    更新日期:2022年8月1日
姓 名 李力 性 别
出生年月 1971年5月 籍贯 苏州
民 族 汉族 政治面貌 群众
最后学历 博士研究生毕业 最后学位 哲学博士
技术职称 教授 导师类别 博士生导师
导师类型 校内 兼职导师
行政职务 所长 Email lili@njust.edu.cn
工作单位 南京理工大学电子工程和光电技术学院 邮政编码 210094
通讯地址 南京市孝陵卫200号
单位电话
个人主页
指导学科
学科专业(主) 0803|光学工程 招生类别 博、硕士 所在学院 电子工程与光电技术学院
研究方向

新型光纤和固体激光器、光纤传感器、微纳光电子器件、生物医疗光学。

学科专业(辅) 0809|电子科学与技术 招生类别 硕士 所在学院 微电子学院(集成电路学院)
研究方向
工作经历

2012-至今,南京理工大学电光学院,教授,博士生导师;微纳光电子器件及应用研究所,所长

2008-2012,TIPD LLC 有限公司(美国),研究科学家

2005-2008,亚利桑那大学(美国),助理研究科学家

教育经历

2001-2005,University of Arizona (亚利桑那大学,美国),光学,博士

1999-2001,Wayne State University(韦恩州立大学,美国),物理学,硕士

1996-1999,浙江大学,光学工程,硕士
 
1989-1993,浙江大学,光学仪器,本科

 

 

获奖、荣誉称号

江苏省高层次“创新创业”人才引进,2013;

江苏省高层次“创新创业”团队引进核心成员,2014;

“针对超硬易碎材料的长脉冲激光微加工系统”,江苏省首届科技创新创业大赛团队组第一名,2013;

“针对超硬易碎材料的长脉冲激光微加工系统”,第二届中国创新创业大赛全国总决赛团队组第三名,2013。

社会、学会及学术兼职

中国光学工程学会理事,2015-至今;

江苏省光学学会理事,2014-至今。

发表论文
1. Highly sensitive vector magnetic field sensors based on fiber Mach-Zehnder interferometers, S. Cai, M. Sergeev, A. Petrov, S. Varzhel, C. Sheng and L. Li*Optics Communications, 2022, accepted for publication.
2. High-power yellow DSR pulses generated from a mode-locked Dy:ZBLAN fiber laser, S. Luo, H. Gu, X. Tang, X. Geng, L. Li*, Z. Cai, Optics Letters, 2022, 47(5): 1157.
3. A diode-pumped femtosecond Pr:YLF laser emitting at the near-infrared 915 nm, S. Luo, H. Gu, X. Tang, X. Geng, C. Sheng, L. Li*, Z. Cai, Optics and Laser Technology, 2022, 151: 107993.
4. Improvement and analysis of a recirculating delayed self-heterodyne interferometer for laser linewidth measurement,  D. Wang, Y. Jiang, X. Geng, H. Gu, and L. Li*Opt. Fiber Technol., 2022, 71:102945. 
5. Study of asymmetric biconical fiber tapers for in-fiber Mach-Zehnder interferometers and applications in single-frequency fiber lasers, D. Wang, Y. Jiang, X. Geng, B. Yang, and L. Li*, Optics Express, 2021, 29(10): 14384.
6. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG, H. Song, D. Yan, W. Wu, B. Shen, X. Feng, Y. Liu, L. Li, Q. Chu, M. Li, J. Wang, and R. Tao, Optics Express, 2021, 29(13): 20536.
7. Fiber Mach–Zehnder interferometers fabricated by nanosecond pulses and applications in refractive index sensing, S. Cai, L. Zhong, M. Sergeev, A. Dmitriev, Y. Jiang, A. Petrov, S. Varzhel, C. Sheng, Li Li*Optics Communications, 2021, 496: 127150.
8. Endless single-polarization single-mode photonic-crystal planar waveguide arrays with ultra-large mode area and ultra-low transmission loss, Z. Ma, P. Zhang, L. Li*, and Xiaowu Ni, Optik, 2021, 238: 166474.
9. Stimulated Brillouin scattering in metamaterials: A new method for estimation based on homogenization approach, Omid Khakpour, Bo Yang, Guo Chao, Lin Honghuan, and Li Li*Applied Physics A,  2021, 127: 547.
10. Electrostriction?induced third?order nonlinear optical susceptibility in metamaterials, Omid Khakpour, Bo Yang, Guo Chao, Lin Honghuan, and Li Li*, Applied Physics A, 2021, 127: 376.
11. S. Wu, S. Wu, H. Feng, Z. Hu, Y. Xie, Y. Su, T. Feng*, and L. Li, An optimized segmentation and quantifcation approach in microvascular imaging for OCTA-based neovascular regression monitoring, BMC Medical Imaging, 2021, 21:13.
12. Study of a multi-ring cavity based single-frequency fiber laser and associated thermal effects, D. Wang, Q. Wang, Y. Jiang, L. Li*, Optical Fiber Technology 60 (2020) 102376.
13. Design and analysis of birefringence-free single-mode photonic crystal planar waveguides with large cross-sections, Ziyang Ma, Li Li*, Xiaowu Ni, Optik, 2020, 204: 164141.
14. L. Xian,* D. Wang, L. Li, Torsion and strain simultaneous measurement using a cascaded helical long-period grating, Journal of the Optical Society of America B, 2020, 37(5): 1307-1311.
15. Switchable and tunable multi-wavelength emissions in pulsed ytterbium fiber lasers with black phosphorus saturable absorbers and polarization-maintaining fiber Bragg gratings, Dongdong Wang, Huaqing Song, Xian Long, Li Li*, Optics Communications 452 (2019) 373–379.
16. Direct oscillation at 640-nm in single longitudinal mode with a diodepumped Pr:YLF solid-state laser, Saiyu Luo, Zhiping Cai, Huiying Xu, Zhe Shen, Hao Chen, Li Li*, Yun Cao, Optics and Laser Technology 116 (2019) 112–116.
17. A wavelength-tunable narrow-linewidth all-fiber laser with cylindrical vector beam outputs, H. Song, Z. Zhao, L. Xian, D. Wang, L. Li*, Optics Communications 428 (2018) 245–250.
18. Diode-pumped 915-nm Pr:YLF laser passively mode-locked with a SESAM, Saiyu Luo, Zhiping Cai, Huiying Xu, Xuefeng Liu, Hao Chen, Yun Cao, and Li Li*, Optics Express, 2018, 26(19): 24695-24701.
19. Influence of molten-state duration time on torsion sensitivity for fiber sensors based on helical long-period gratings: An experimental study, Lunlun Xian, Ying Wang, Dongdong Wang, Li Li*, Optical Fiber Technology, 2018, 46: 226–229.
20. Passively Q-switched All-fiber lasers generating cylindrical vector beams with 2-dimensional material saturable absorbers, Huaqing Song, Dongdong Wang, Qi Wang, and Li Li*, Opt. Fiber Technol., 2018, 45: 71–76.
21. Experiments and analysis of tunable monolithic 1-μm single-frequency fiber lasers with loop mirror filters, Qi Wang, Huaqing Song, Xingpeng Wang, Dongdong Wang, Li Li*, Optics Communications, 2018, 410: 884–888.
22. Passively Q-switched wavelength-tunable 1-μm fiber lasers with tapered fiber based black phosphorus saturable absorbers, Huaqing Song, Qi Wang, Dongdong Wang, Li Li*, Results in Physics, 2018, 8: 276–280.
23. First-principle design and analysis of photonic-crystal planar waveguides and linear arrays with ultra-large single-mode areas, Ziyang Ma, Li Li*, Xiaowu Ni,, Optical and Quantum Electronics, 2018, 50: 90.
24. A theoretical study on achieving the generalized binomial states with second harmonic generation processes, Yuzhe Zhang, Ziyang Ma, Li Li*, Chuanxiang Sheng, and Yishi Han, Optical and Quantum Electronics, 2018, 50: 172.
25. Fabrication and characterization of helical long-period fiber gratings in single-mode fibers, X. Wang, D. Wang, Q. Wang, L. Xian*, L. Li*, Optik, 2018, 158: 28.
26. Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers, Huaqing Song, Qi Wang, Yunfan Zhang, and Li Li*, Optics Communications, 2017, 394: 157–160.
27. Excited-states spectroscopies and its magnetic field effect of π-conjugated polymer-fullerene blends with below-gap excitation, R. Z. Wang, X. Yang, W. Hong, Y. C. Wang, H. Li*, L. Li*, and C.-X. Sheng, Synthetic Metals, 2017, 223: 132-136.
28. 云母晶面上准外延生长的胶原蛋白纳米线阵列的性质研究, 杨德良, 曾凡喜, 孙铭*, 顾文华, 李力*, 分析化学, 2017, 45(4): 465-470.
29. 在云母晶面上应用“自下而上”和“自上而下”两种途径制造胶原蛋白纳米线阵列, 李力, 张磊, 杨德良, 孙铭*, 曾凡喜, 顾文华*, 无机化学学报, 2017, 33(5): 745-752.
39. 利用原子力显微镜探针的扫帚机理制备胶原蛋白纳米纤维阵列, 孙铭*, 洪玮, 疏静, 李力*, 分析化学, 2016, 44(10): 1471-1476.
31. Theoretical Study of Weakly-Guided Large-Mode-Area Rib Waveguides: Single-Mode Condition, Birefringence, and Supermode Generation, Z. Ma, L. Li*, H. Lv, and X. Ni, Optical and Quantum Electronics, 2016, 48: 554.
32. 转动光谱学与微波光谱技术研究进展, 李力, 孙铭*, 李晓花, 赵镇文, 马会民, 甘海勇, 林镇辉, 史生才, Lucy M. Ziurys,分析化学, 2014, 42(9): 1369-1378.
33. Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving, O. D. Herrera, K. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, J. Lightwave Technol., 2014, 32(20): 3861-3867.
34. A Silicon-Polymer Hybrid Modulator - Design, Simulation and Proof of Principle, R. Himmelhuber*, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, J. Lightwave Technology, 2013, 31(24): 4067-4072.
35. Tm3+ and Yb3+ co-doped tellurite glasses for short cavity optical fiber lasers: Fabrication and optical characterization, D. Milanese, H. Gebavi, J. Lousteau, M. Ferraris, A. Schulzgen, L. Li, N. Peyghambarian, S. Taccheo, F. Auzel, J. Non-crystalline Solids, 2010, 356(44-49): 2378-2383.
36. Microstructured Active Phosphate Glass Fibers for Fiber Lasers, A. Schülzgen, L. Li, X. Zhu, V. L. Temyanko, and N. Peyghambarian, J. Lightwave Technol. 27, 1734, (2009).
37. Generation of Controllable Nondiffracting Beams Using Multimode Optical Fibers, X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
38. High-Power Fiber Lasers and Amplifiers Based on Multimode Interference, X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, IEEE Selected Topics in Quantum Electronics 15, 71 (2009).
39. Microstructured Active Phosphate Glass Fibers for Fiber Lasers, A. Schülzgen, L. Li, X. Zhu, V. L. Temyanko, and N. Peyghambarian, J. Lightwave Technol. 27, 1734, (2009).
40. 1-W Tunable Dual-Wavelength Emission From Cascaded Distributed Feedback Fiber Lasers, L. Li*, A. Schulzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, Appl. Phys. Lett. 92, 051111 (2008).
41. Detailed Investigation of Self-Imaging in Large-Core Multimode Optical Fibers for Application in Fiber Lasers and Amplifiers, X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, Opt. Express 16, 16632 (2008).
42. Distributed Feedback Fiber Laser Pumped by Multimode Laser Diodes, A. Schülzgen, L. Li, V. L. Temyanko, D. Nguyen, Ch. Spiegelberg, R. Matei Rogojan, J. Albert, and N. Peyghambarian, Opt. Lett. 33, 614 (2008).
43. Single-Transverse-Mode Output from a Fiber Laser Based on Multimode interference, X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 33, 908 (2008).
44. Continuous-Wave All-Solid-State 244 nm Deep-Ultraviolet Laser Source by Fourth-Harmonic Generation of an Optically Pumped Semiconductor Laser Using CsLiB6O10 in an External Resonator, Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, Opt. Lett. 33, 1705 (2008).
45. Local Electric Field Enhancement and Polarization Effects in a Surface-Enhanced Raman Scattering Fiber Sensor with Chessboard Nanostructure, S. Chen, L. Han, A. Schülzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian,  Opt. Express 16, 13016 (2008).
46. Phase-Locked Multicore All-Fiber Lasers: Modeling and Experimental Investigation, L. Li*, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, J. Opt. Soc. Am. B 24, 1721 (2007).
47. Birefringent In-Phase Supermode Operation of a Multicore Microstructured Fiber Laser, X. Zhu, A. Schülzgen, L. Li, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Express 15, 10340  (2007).
48. Phase Locking and In-Phase Supermode Selection in Monolithic Multicore Fiber Lasers, L. Li*, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 31, 2577 (2006).
49. Ultra-Compact Cladding-Pumped 35-mm-Short Fiber Laser with 4.7-W Single-Mode Output Power, L. Li*, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, Appl. Phys. Lett. 88, 161106 (2006).
50. Single-Frequency Fiber Oscillator with Watt-Level Output Power Using Photonic Crystal Phosphate Glass Fiber, A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, Opt. Express 14, 7087 (2006).
51. Investigation of Modal Properties of Microstructured Optical Fibers with Large Depressed-Index Cores, L. Li*, A. Schülzgen, V. L. Temyanko, S. Sabet, M. M. Morrell, H. Li, A. Mafi, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 30, 3275 (2005).
52. Short-Length Microstructured Phosphate Glass Fiber Lasers with Large Mode Areas, L. Li*, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 30, 1141 (2005).
53. 3-Dimensional Thermal Analysis and Active Cooling of Short-Length High-Power Fiber Lasers, L. Li*, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, Opt. Express 13, 3420 (2005).
54. Generation of Watt-Level Single Longitudinal Mode Output from Cladding Pumped Short Fiber Lasers, T. Qiu, A. Schülzgen, L. Li, A. Polynkin, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 30, 2748 (2005).
55. Generation of 9.3-W Multimode and 4-W Singlemode Output from 7-cm Short Fiber Lasers, T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, IEEE Photonics Techn. Lett. 16, 2592 (2004).
56. Short Cladding-Pumped Er/Yb Phosphate Fiber Laser with 1.5 W Output Power, L. Li*, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, Appl. Phys. Lett. 85,  2721 (2004).
57. 分光棱镜型分振幅光度式偏振测量系统的研究, 李力,刘旭,李海峰,光学仪器, 1991,21(4-5):159-165.
教学活动

主讲课程:

本科课程:物理光学(2014-2019),电动力学(2020 - ),量子力学引论(2024 -);

留学生课程:Physical Optics(全英文教学);

研究生课程:Advanced Physical Optics (全英文教学)。

指导学生情况

目前共指导博士研究生4人,硕士研究生10人;已毕业博士研究生4人,硕士研究生8人。

欢迎光电信息专业、电子科学与技术专业和微电子专业的优秀学生加入我们!