目录
硕士报考志愿采集    更新日期:2024年10月14日
姓 名 周涛 性 别
出生年月 1986年10月 籍贯
民 族 汉族 政治面貌 中国共产党党员
最后学历 博士研究生 最后学位 工学博士
技术职称 教授 导师类别 博、硕导
导师类型 校内 兼职导师
行政职务 Email taozhou@njust.edu.cn
工作单位 计算机科学与工程学院 邮政编码
通讯地址
单位电话
个人主页 https://taozh2017.github.io/
指导学科
学科专业(主) 0812|计算机科学与技术 招生类别 博、硕士 所在学院 计算机科学与工程学院
研究方向

 

机器学习、医学图像处理与分析、AI健康、计算机视觉

 

工作经历

2021.01 -- 至今          南京理工大学,计算机科学与工程学院,教授
2018.12 -- 2021.01    起源人工智能研究院, 研究科学家

2016.07 -- 2018.11    北卡罗来纳大学教堂山分校,博士后

教育经历

2012 -- 2016    上海交通大学,博士

2009 -- 2012     江南大学, 硕士

2005 -- 2009     信息工程大学,学士

社会、学会及学术兼职

Associate Editors:

    -- IEEE TNNLS (2024--);

    -- IEEE TMI (2024--);

    -- Pattern Recognition (2024--);

    -- Guest Editor for Multimedia Tools and Applications, 2019;

 -- Guest Editor for IEEE Journal of Biomedical and Health Informatics (IEEE JBHI), 2020;

Reviewers

    -- PC member for CVPR/ICCV/ICML/ICLR/NIPS/AAAI/IJCAI/MICCAI et al.

    -- Reviewers for IEEE TPAMI/TIP/TNNLS/TCYB/TKDE/TMI, PR/MIA/JBHI et al.

科研项目

主持海外高层次人才计划(青年项目)、自然基金面上项目、教育部重点实验室开放课题、南京市留学人员科技创新项目、南理工启动基金等。

发表论文

部分代表性论文:

Z. Lu, Y. Zhang, Y. Zhou, Y. Wu, T. Zhou (通讯作者). Domain-interactive Contrastive Learning and Prototype-guided Self-training for Cross-domain Polyp Segmentation. IEEE Transactions on Medical Imaging (IEEE TMI) , 2024.

Y. Gu, T. Zhou (通讯作者), Y. Zhang, Y. Zhou, K. He, C. Gong, H. Fu. Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation. Pattern Recognition (PR), 2024.

Y. Zhao, Y. Zhou, Y. Zhang, Y. Wu, T. Zhou (通讯作者). TextPolyp: Point-supervised Polyp Segmentation with Text Cues. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) , 2024.

Y. Ding, T. Zhou (通讯作者), L. Xiang, Y. Wu. Cross-contrast mutual fusion network for joint MRI reconstruction and super-resolution. Pattern Recognition (PR) , 2024

Y. Li, T. Zhou (通讯作者), K. He, Y. Zhou, D. Shen. Multi-scale Transformer Network with Edge-aware Pre-training for  Cross-Modality MR Image Synthesis. IEEE Transactions on Medical Imaging (IEEE TMI), 2023.

H. Yang, T. Zhou (通讯作者), Y. Zhou, Y. Zhang, H. Fu. Flexible Fusion Network for Multi-modal Brain Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics (IEEE JBHI), 2023.

T. Zhou, Y. Zhou, K. He, C. Gong, J. Yang, H. Fu, D. Shen. Cross-level Feature Aggregation Network for Polyp Segmentation. Pattern Recognition (PR), 2023.

T. Zhou, H. Fu, C. Gong, L. Shao, F. Porikli, H. Ling, and J. Shen. Consistency and Diversity induced Human Motion Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI), 2023. 

T. Zhou, Y. Zhou, C.Gong, J. Yang, Y. Zhang. Feature Aggregation and Propagation Network for Camouflaged Object Detection. IEEE Transactions on Image Processing (IEEE TIP), 2022.

G. Chen, S. Liu, Y. Sun, G. Ji, Y. Wu, T. Zhou (通讯作者). Camou?aged Object Detection via Context-aware Cross-level Fusion. IEEE Transactions on Circuits and Systems for Video Technology (IEEE TCSVT),2022

T. Zhou, H. Fu, G. Chen, Y. Zhou, D.-P. Fan, L. Shao. Specificity-preserving RGB-D Saliency Detection. International Conference on Computer Vision (ICCV), 2021. 

Y. Zhou, L. Huang, T. Zhou, H. Fu, L. Shao. Visual-Textual Attentive Semantic Consistency for Medical Report Generation. International Conference on Computer Vision (ICCV), 2021.

Y. Zhou, L. Huang, T. Zhou, L. Shao. CCT-Net: Category-Invariant Cross-Domain Transfer for Medical Single-to-Multiple Disease Diagnosis. International Conference on Computer Vision (ICCV), 2021.

Y. Sun, G. Chen, T. Zhou (通讯作者), Y. Zhang, N. Liu. Context-aware Cross-level Fusion Network for Camouflaged Object Detection. International Joint Conference on Artificial Intelligence (IJCAI), 2021.

Y. Zhang, T. Zhou, W. Wu, H. Xie, H. Zhu, G. Zhou, A. Cichocki. Improving EEG Decoding via Clustering-based Multi-task Feature Learning. IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2021.

T. Zhou, H. Fu, C. Gong, J. Shen, L. Shao, F. Porikli. Multi-mutual Consistency Induced Transfer Subspace Learning for Human Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.  

T. Zhou, H. Fu, G. Chen, J. Shen, L. Shao. Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis. IEEE Transactions on Medical Imaging (IEEE TMI), 2020.

T. Zhou, K.-H. Thung, M. Liu, F. Shi, C. Zhang, D. Shen. Multi-modal latent space inducing ensemble SVM classifier for early dementia diagnosis with neuroimaging data. Medical Image Analysis (MIA), 2020.

T. Zhou, D.-P. Fan, M.-M. Cheng, J. Shen, L. Shao. RGB-D Salient Object Detection: A Survey. Computational Visual Media (CVMJ), 2020. [ESI高引论文]

D.-P. Fan, T. Zhou, G.-P. Ji, Y. Zhou, G. Chen, H. Fu, J. Shen, L. Shao. Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Scans. IEEE Transactions on Medical Imaging (IEEE TMI), 2020. [ESI高引论文]

T. Zhou, K.-H. Thung, X. Zhu, D. Shen. Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis. Human Brain Mapping (HBM), 2019. 

T. Zhou, C. Zhang, X. Peng, H. Bhaskar, and J. Yang. Dual Shared-Specific Multiview Subspace Clustering. IEEE Transactions on Cybernetics (IEEE TCYB), 2019.

T. Zhou, M. Liu, K.-H. Thung, D. Shen. Latent Representation Learning for Alzheimer’s Disease Diagnosis with Incomplete Multi-modality Neuroimaging and Genetic Data. IEEE Transactions on Medical Imaging (IEEE TMI), 2019.

T. Zhou, C. Zhang, C. Gong, H. Bhaskar, J. Yang. Multiview latent space learning with feature redundancy minimization. IEEE Transactions on Cybernetics (IEEE TCYB), 2018.

T. Zhou, K.-H. Thung, M. Liu, D. Shen. Brain-wide Genome-wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model. IEEE Transactions on Biomedical Engineering (IEEE TBME), 2018.

T. Zhou, F. Liu, H. Bhaskar, J. Yang. Robust visual tracking via online discriminative and low-rank dictionary learning. IEEE Transactions on Cybernetics (IEEE TCYB), 2017.

T. Zhou, H. Bhaskar, F. Liu, J. Yang. Graph Regularized and Locality-Constrained Coding for Robust Visual Tracking. IEEE Transactions on Circuits and Systems for Video Technology (IEEE TCSVT), 2017.

教学活动

本科生课程:Python程序设计,Python课程设计,人工智能漫谈

指导学生情况

每年可招收博士研究生1-2名,硕士研究生3-4名。

课题组欢迎真正热爱科研、喜欢探索,对机器学习、计算机视觉、AI医疗交叉等领域感兴趣的同学与我联系同时欢迎优秀本科生联系并参与科研训练!

提供浓厚的科研氛围、全方位个性化指导,培养独立思考和动手能力,产出高质量成果,共创美化未来!

   有意向的本科生,报考硕士、博士研究生的同学请提前发简历至邮箱联系(email: taozhou@njust.edu.cn)

   2025 年秋季硕士仍有少量招生名额,欢迎联系!

我的团队

目前团队,包括博士生3名、硕士生12人、本科生科研训练5人。主要专注于人工智能与智慧医疗交叉研究,具体的研究方向包括:

(1)多视图/模态学习及应用;

(2)医学图像分割;

(3)图像生成;

  (4)  迁移学习/自监督/半监督/弱监督在AI医疗中应用研究等;

  (5)  医学基础大模型构建、微调、提示学习;