目录
硕士报考志愿采集    更新日期:2023年12月29日
姓 名 夏焕明 性 别
出生年月 1976年3月 籍贯
民 族 汉族 政治面貌 群众
最后学历 研究生毕业 最后学位 工学博士
技术职称 教授 导师类别 博士生导师
导师类型 校内 兼职导师
行政职务 Email hmxia@njust.edu.cn
工作单位 南京理工大学机械工程学院 邮政编码 210094
通讯地址 南京市玄武区孝陵卫200号
单位电话
个人主页
指导学科
学科专业(主) 080401|精密仪器及机械 招生类别 博、硕士 所在学院 机械工程学院
研究方向

微流控、芯片实验室、微型反应器

工作经历

2007年-2014年  新加坡科技研究局制造技术研究院 研究员

2015年-至今      南京理工大学机械工程学院仪器科学与技术系 教授

教育经历

南京航空航天大学 (本科,硕士)

新加坡国立大学 (博士)

获奖、荣誉称号

2010年 新加坡制造技术研究院 “最佳研究项目”奖

2014年 入选“江苏特聘教授”计划

社会、学会及学术兼职

《Chemical Engineering Journal》、《Industrial & Engineering Chemistry Research》、《Physics of Fluids》、《Microfluidics and Nanofluidics》,《Journal of Micromechanics and Microengineering》等期刊审稿人

科研项目

科研项目

  1. 装备发展部,××× 专项子专题,140××××××,××× 制备技术,2018/09~2020/09
  2. 某产品微反应制备工艺技术研究(I&II), 工业项目,2018/9~2020/12
  3. 自然科学基金面上项目,51575282,基于水弹性和气动弹性效应的微流体操控机理和方法研究,2016/1~2019/12
  4. 南京理工大学自主科研专项计划项目,30915118802,基于振荡流的液滴微流控技术研究,2015/11~2018/10

2014年前主要承担和参加的研究项目

  1. 与南洋理工大学联合研究项目,磁性微流体扩散现象研究(Magnetofluidic spreading),2013/10~2014/12。
  2. 与新加坡高性能计算研究院联合研究项目,新型微流体混合器和振荡器工作机理及设计优化研究,2013/1~2013/12。
  3. 工业项目,面向工业实际应用的关键微流控技术研究,2011/11~2013/2。
  4. 新加坡制造技术研究院研究项目,一种微流体振荡器的设计、表征及应用, 2010/7~2011/6。
  5. 新加坡制造技术研究院研究项目,多种微型混合器的设计、实现及应用研究,2009/5~2010/4。
  6. 工业项目,一种便携式床边检测系统的开发,2013/12~2014/12。
  7. 与新加坡国立大学联合研究项目,基于芯片实验室技术的人类鼻上皮干细胞研究,2012/8~2014/3。
  8. 与南洋理工大学联合研究项目,表面声波(SAW)微流控技术研究,2012/8~2016/12。
发表论文

期刊论文

  1. C. C. Yuan, Q.Q. Gu, H.C. Fang, H. M. Xia*, An investigation on microfluidic preparation of aluminum phosphate adjuvant, Microfluidics and Nanofluidics, 27:54, 2023.
  2. M. Wang, H. M. Xia*, L. Zhu, Y.Y. Zhang, Regulating the gas-liquid slug flow in microchannels through high-frequency pulsatile perturbations, Industrial and Engineering Chemistry Research, 62, 1997-2007, 2023.
  3. Y.Y. Zhang, J.M. Wang, J.W. Wu, H. M. Xia*, Numerical study on active droplet generation governed by pulsatile continuous-phase flow, Asia-Pacific Journal of Chemical Engineering, 2023: e2997, 2023.
  4. Y.Y. Zhang, H. M. Xia*, PZT actuator-controlled high-frequency microdroplet generation: reducing the restrictions of channel size, fluid viscosity, and flow rate, Sensors and Actuators: B. Chemical, 368,132183, 2022.
  5. J. W. Wu, H. M. Xia*, Z. P. Wang, W. Wang, H. J. Du, Analyzing the effects of key design factors of a negative-differential-resistance (NDR) microfluidic oscillator―An equivalent-circuit-model approach, Advances in Applied Mathematics and Mechanics, 14(6), 1381-1399,  2022.
  6. J.Y. Shi, P. Zhu, J.Z. Liu, R.Q. Shen, H.M. Xia, H.Y. Jiang, S.Y. Xu, F.Q. Zhao, Coupling oscillating-swirling-coflowing: A microfluidic strategy for superior safety and output performance of core-shell energetic microspheres, Industrial and Engineering Chemistry Research, 61, 17593-17606, 2022.
  7. Y.Z. Chu, J.F. Chen, H. M. Xia*, Improving the immunoassay for procalcitonin detection using an aeroelastic agitator: A feasibility study, Sensors & Actuators: A. Physical, 340, 113542, 2022.
  8. F. Yan, P. Zhu, S. Zhao, J. Shi, Y. Mu, H.M. Xia, R. Shen, Microfluidic strategy for coating and modification of polymer-bonded nano-HNS explosives, Chemical Engineering Journal, 428, 131096, 2022.
  9. H.M. Xia*, J.W. Wu, J.J. Zheng, J. Zhang, Z.P. Wang, Nonlinear microfluidics: Device physics, functions, and applications, Lab on a Chip, 21, 1241-1268, 2021.
  10. Y.T. Duan, C.Y. Mao, Y.Y. Zhang, D.Z. Wang, H.M. Xia*, A facile method for Microfluidic metering and transport, Microfluidics and Nanofluidics, 25:94, 2021.
  11. J.M. Wang, Q.Q. Jin, Y.Y. Zhang, H.C. Fang, H.M. Xia*, Reducing the membrane fouling in cross-flow filtration using a facile fluidic oscillator, Separation and Purification Technology, 272, 118854, 2021.
  12. J.Y. Ning, J. B. Liu, J. Z. Liu, Q.H. Zhang, W.Q. Zhang, H.M Xia, R. Q, Shen, P. Zhu, Multi-parallel microfluidic recrystallization and characterization of explosives, Energetic Materials Frontiers, 2, 278-286, 2021. 
  13. J. Shi, P. Zhu, S. F. Zhao, C. Xu, F. Yan, R. Q. Shen, H.M. Xia, H. Jiang, S. Xu, F. Zhao, Continuous spheroidization strategy for explosives with micro/nano hierarchical structure by coupling microfluidics and spray drying. Chemical Engineering Journal 412(1), 128613, 2021.
  14. L. Zhu, Z.F. Wang, H.M. Xia, H.Yu, Design and fabrication of the vertical-flow bioreactor for compaction hepatocyte culture in drug testing application, Biosensors, 11(5), 160, 2021.
  15. X. Zhou, C. Chen, P. Zhu, S.F. Zhao, J.Y. Shi, F. Yan, R.Q. Shen, H.M.Xia, Microreaction system combining chaotic micromixing with fast mixing and particle growth in liquid-segmented flow for the synthesis of hazardous ionic materials, Energetic Materials Frontiers,1(3-4), 186-194, 2020
  16. J. Shi, P. Zhu, S. F. Zhao, R. Q. Shen, H.M. Xia, H. Jiang, S. Xu, Microfluidic strategy for rapid and high-quality control of crystal morphology of explosives, Reaction Chemistry & Engineering, 5(6), 1093-1103, 2020. .
  17. J. W. Wu, H. M. Xia*, W. Wang, Y. Foo, Z. P. Wang, H. Du, A droplet platform capable of handling dissimilar liquids and its application for separation of bacteria from blood. Biomicrofluidics, 14, 034102, 2020.
  18. C. Chen,   S. F. Zhao,   P. Zhu,   J. Y. Shi,   F. Yan,   H. M. Xia, R.Q. Shen. Improvement of silver azide crystal morphology and detonation behavior by fast mixing using a microreaction system with integrated static micro mixer, Reaction Chemistry & Engineering, 5, 154-162, 2020
  19. S.F. Zhao, C. Chen, P. Zhu, H.M. Xia, J. Shi, F. Yan, R. Shen, Passive micromixer platform for size- and shape-controllable preparation of ultrafine HNS, Industrial & Engineering Chemistry Research, 58, 36, 16709-16718, 2019.
  20. Y.Y. Zhang, H. M. Xia,* J.W. Wu, J. Zhang, Z.P. Wang, Synchronized generation and coalescence of largely dissimilar microdroplets governed by pulsating continuous-phase flow, Applied Physics Letters, 114, 073701, 2019.
  21. J. W. Wu, H. M. Xia,* Y. Y. Zhang, S. F. Zhao, P. Zhu, Z. P. Wang, An efficient micromixer combining oscillatory flow and divergent circular chambers, Microsystem Technologies, 25, 2741-2750, 2019.
  22. Y.H. Piao, X.B. Wang, H. M. Xia, W.Q. Wang, Digital microfluidic platform for automated detection of human chorionic gonadotropin, Microfluidics and Nanofluidics, 23:1, 2019.
  23. S.F. Zhao, J.W. Wu, P. Zhu, H.M. Xia, C. Chen, R.Q. Shen, A microfluidic platform for preparation and screening of narrow size-distributed nanoscale explosives and supermixed composite explosives, Industrial & Engineering Chemistry Research, 57, 13191-13204, 2018.
  24. S.F. Zhao, N. Zhou, P. Zhu, H.M. Xia, Y. Yang, R.Q. Shen, Y.H. Ye, Optimization synthesis of morphologically homogeneous and rod-like barium trinitroresorcinate produced by segmented flow, Journal of Chemical Engineering of Japan, 51(6), 524-529, 2018.
  25. J. W. Wu, H. M. Xia*, Y. Y. Zhang, P. Zhu, Microfluidic mixing through oscillatory transverse perturbations, Modern Physics letters B, 32 (12-13), 1840030, 2018.
  26. J. Zhang, D. Yuan, Q. Zhao, S. Yan, S.Y. Tang, S. H. Tan, J. Guo, H. M. Xia, et al., Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device, Sensors and Actuators B: Chemical, 267, 14-25, 2018.
  27. S.F. Zhao, F. Yan, P. Zhu, Y. Yang, H. M. Xia, R. Shen, Y.H. Ye, Micro-segmented flow technology applied for synthesis and shape control of lead styphnate micro-Particles, Propellants, Explosives, Pyrotechnics, 43, 286-293, 2018
  28. H. M. Xia*, J. W. Wu, Z. P. Wang, A comparative discussion of different designs of passive micromixers: specific sensitivities of mixing efficiency on Reynolds numbers and fluid properties, Microsystem Technologies, 24(2), 1253-1263, 2018.
  29. H. M. Xia*, X. Jin, Y.Y. Zhang, J. W. Wu, J. Zhang, Z. P. Wang, Integrated aeroealstic vibrator for fluid mixing in open microwells,  Journal of Micromechanics and Microengineering, 28, 017001, 2018.
  30. J. Zhang, D. Yuan, R. Sluyter, S. Yan, Q. Zhao. H.M. Xia, et al., High-through separation of white blood cells from whole blood using inertial microfluidics, IEEE Transactions on Biomedical Circuits and Systems, 11(6),1422-1430, 2017.
  31. H. M. Xia*, J. W. Wu, Z. P. Wang, The negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator, Journal of Micromechanics and Microengineering, 27, 075001, 2017.
  32. L. Zhu, H.M. Xia, Z.F. Wang, E. L. S. Fong, J. J. Fan , W. H. Tong, Y. P. D. Seah, W.A. Zhang, Q.S. Li, and H.  Yu. Vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions, Lab Chip, 16, 3898-3908, 2016.
  33. N. Zhou, P. Zhu, Y. Rong, H.M. Xia, R.Q. Shen, Y. H. Ye, S. L. Lv, Microfluidic synthesis of size-controlled and morphologically homogeneous lead trinitroresorcinate produced by segmented flow, Propellants, Explosives, Pyrotechnics, 41, 899-905, 2016.
  34. S. Wan, H. M. Xia, K. Pankaj, “Numerical analysis and characterization of a Wankel pump as a miniaturized mixer", Journal of Micromechanics and Microengineering, 25, 084001, 2015.
  35. R. Kishor, Y.P Seah, Y.J Zheng, H.M Xia, Z.F. Wang, H.J. Lu, T.T. Lim, “Characterization of an acoustically coupled multilayered microfluidic platform on SAW substrate using mixing phenomena”, Sensors & Actuators A, 233, 360-367, 2015.
  36. H. M. Xia*, Y. P. Seah, Y. C. Liu, W. Wang, Alicia G. G. Toh, Z. P. Wang, “Anti-solvent precipitation of solid-lipid nanoparticles using a microfluidic oscillator mixer”, Microfluidics and Nanofluidics, 19, 283-290, 2015.
  37. Z. M. Wang, V. B. Varma, H. M. Xia, Z. P. Wang, R. V. Ramanujan, “Spreading of a ferrofluid core in three-stream micromixer channels", Physics of Fluids, 27, 052004, 2015.
  38. Z. Z. Chong, W. Jun Sim, Z. T. Yeo, K. H. Li, S. H. Ng, H. M. Xia, T. N. Wong, N. H. Loh, S. B. Tor, S. H. Tan, N.-T. Nguyen, “Elastic magnetic membrane for improved mixing in microwells”, Micro and Nanosystems, 6, 232-236, 2014.
  39. H. M. Xia*, Z. P. Wang, V. B. Nguyen, S. H. Ng, W. Wang, F. Y. Leong, D. V. Le, “Analyzing the transition pressure and viscosity limit of a hydroelastic microfluidic oscillator”, Applied Physics Letters, 104, 024101, 2014.
  40. W. Wang, Y. Yan, C. W. Li, H. M. Xia, S. S. Chao, D. Y. Wang, Z. P. Wang, “Live Human Nasal Epithelial Cells (hNECs) On Chip for In Vitro Testing of Gaseous Formaldehyde Toxicity via Airway Delivery”, Lab Chip, 14, 677-680, 2014.
  41. H. M. Xia*, Z. P. Wang, W. Wang, W. Fan, A. Wijaya, Z. F. Wang, “Aeroelasticity-based fluid agitation for lab-on-chips”, Lab Chip, 13, 1619-1625, 2013.
  42. H. M. Xia*, Z. P. Wang, S. Y. M. Wan, F. F. Yin, “Numerical study on microstructured reactor with chaotic heat and mass transfer and its potential application for exothermic process”, Chemical Engineering Research and Design, 90(11), 1719-1726, 2012.
  43. H. M. Xia*, Z. P. Wang, F. Wei, A. Wijaya, W. Wang, Z. F. Wang, “Converting steady laminar flow to oscillatory flow through a hydro-elasticity approach at micro scales”, Lab Chip, 12, 60-64, 2012.
  44. Z. K. Wang, H. Y. Zheng, H. M. Xia, “Femtosecond laser-induced modification of surface wettability of PMMA for fluid separation in microchannels”, Microfluidics and Nanofluidics, 10, 225-229, 2011.
  45. H. M. Xia, Z. P. Wang, Y. X. Koh, K. T. May, “A microfluidic mixer with self-excited ‘turbulent’ fluid motion for wide viscosity ratio applications”, Lab Chip, 10, 1712-1716, 2010.
  46. H. M. Xia, C. Shu, Y. T. Chew and Z. P. Wang, “Approximate mapping method for prediction of chaotic mixing in spatial-periodic microchannel”, Chemical Engineering Research and Design, 88 (10), 1419-1426, 2010.
  47. L. P. Yeo, S. H. Ng, Z. F. Wang, H. M. Xia, Z. P. Wang, V. S. Thang, Z. W. Zhong, N. F. de Rooij, “Investigation of hot roller embossing for microfluidic devices”, Journal of Micromechanics and Microengineering, 20, 015017, 2010.
  48. H. M. Xia, C. Shu, S. Wan, Y. T, Chew, “Influence of Reynolds number on chaotic mixing in spatially periodic micromixer and its characterization using dynamical system techniques”, Journal of Micromechanics and Microengineering, 16, 53-61, 2006.
  49. H. M. Xia, S. Wan, C. Shu, Y. T. Chew, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers”, Lab Chip, 5, 748-755, 2005.
  50. H. M. Xia, C. Shu, S. Wan, Y. T. Chew, “Numerical and experimental observation of chaotic mixing in microfluidic mixer”, Journal of Visualization,  8, 291, 2005.
  51. Y. T. Chew, H. M. Xia, C. Shu, S. Wan, “Techniques to enhance fluid micro-mixing and chaotic micromixers”, Modern Physics Letters B, 19, 1567-1570, 2005.
  52. S. C. Luo, H. M. Xia, “Parallel vortex shedding at Re = O(10^4) – a transverse control cylinder technique approach”, Journal of Fluid Mechanics, 541, 143-165, 2005.
科研创新

专利申请

  1. 夏焕明,王蒙,崔俊雅;一种基于脉冲气流的液滴喷射方法;申请日期 2023.07.07,申请号 2023108301773
  2. 王蒙,夏焕明;一种基于脉冲气流的泰勒流及液滴制备系统;申请日期 2022.08.31,申请号 202211062799.8
  3. 夏焕明,茅成跃;一种微流体自动 定量取样方法和系统;申请日期 2021.11.22,申请号 202111388204.3
  4. 袁超超,夏焕明;一种铝盐疫苗佐剂的微流控制备方法,申请日期 2022.12.08,申请号 202211573839.5
  5. 初永政,夏焕明,一种流体激励器及流体激励系统,申请日期 2019.05.22,申请号 201910427967.0
  6. 段钰彤,夏焕明,一种微流控进样系统,发明专利号:ZL 201911108235, 授权日期:2021.05.04
  7. 夏焕明,张言引,一种基于振荡流的液滴融合方法及器件,发明专利号:ZL 201810266414.7, 授权日期:2021.05.07
  8. 夏焕明,张言引,一种基于振荡流主动控制的液滴制备方法及器件,发明专利号:ZL 201810267395.X,授权日期:2021.05.13.
  9. 夏焕明; 赵双飞; 朱朋; 沈瑞琪; 叶迎华, 一种基于微流控技术的纳米炸药制备系统和方法,发明专利号:ZL 201811027496.6, 授权日期:2020.12.25
  10. 吴嘉炜,夏焕明,一种振荡流微混合器,实用新型专利号:201720098426.4,授权日期 2017.10.10.
  11. 夏焕明,王志平,吴嘉炜,一种负流阻振荡器,实用新型专利号:201720418413.0,授权日期 2017.10.23.
  12. H. M. Xia, Z. P. Wang, W. Wang, Microfluidic Agitator Devices and Methods for Agitation of a Fluid, US Patent No.: US 9364804 B2, Jun 14, 2016.
  13. H.M. Xia, Z. P. Wang, Microfluidic Mixing Apparatus and Method, US Patent No.: US 9393535 B2, Jul 19, 2016.
  14. H. M. Xia, Z. P. Wang, W. Fan, Z. F. Wang, A microfluidic device for altering a fluid flow and a microfluidic system including the microfluidic device, WO/2012/036627; PCT application No.: PCT/SG2010/000346, 2009.
教学活动

1. 新生研讨课 《芯片实验室技术漫谈及器件制作》

2.专业课《微系统技术》