目录
硕士报考志愿采集    更新日期:2024年3月28日
姓 名 张舒乐 性 别
出生年月 1982年11月 籍贯 葫芦岛
民 族 汉族 政治面貌 中国共产党党员
最后学历 研究生毕业 最后学位 工学博士
技术职称 教授 导师类别 博士生导师
导师类型 校内 兼职导师
行政职务 副院长 Email shulezhang@163.com
工作单位 南京理工大学化工学院化学工程系 邮政编码 210094
通讯地址 南京市玄武区孝陵卫200号
单位电话
个人主页
指导学科
学科专业(主) 0817|化学工程与技术 招生类别 博、硕士 所在学院 化学与化工学院
研究方向

催化反应工程、多相强化吸收、先进功能材料、双碳领域技术研发、分离工程。

获奖、荣誉称号

江苏省科学技术奖一等奖、国家级教学成果二等奖;指导研究生获互联网+全国大学生创新创业大赛全国总决赛主赛道金奖、指导本科生连续5次获全国大学生化工设计大赛特等奖。

社会、学会及学术兼职

江苏省石油学会理事、Frontiers in Chemistry特刊编委

发表论文

近年来以通讯作者发表的主要论文:

2023年

[1]  Guo L N, Zhang X, Meng F Y, Yuan J, Zeng Y Q, Han C Y, Jia Y, Gu M Y, Zhang S L*, Zhong Q. Synergistic effect of F and triggered oxygen vacancies over F-TiO2 on enhancing NO ozonation. Journal of Environmental Sciences, 2023, 125: 319~331

[2] Li G J, Lian Z, Wan Z W, Liu Z N, Qian J W, Deng Y, Zhang S L*, Zhong Q. Ni(OH)2 clusters decorated NiTiO3 Z-scheme heterojunctions with strong O2 activation and robust interfacial built-in electric field for efficient NO photo-oxidation. Chemical Engineering Journal, 2023, 451: 138625

 

2022年

[1] Li G J, Lian Z, Wan Z W, Liu Z N, Qian J W, Deng Y, Zhang S L*, Zhong Q. Efficient photothermal-assisted photocatalytic NO removal on molecular cobalt phthalocyanine/Bi2WO6 Z-scheme heterojunctions by promoting charge transfer and oxygen activation. Applied Catalysis B: Environmental, 2022, 317(15): 121787

[2] Lian Z, Li G J, Zhang S L*, Ma W H, Zhong Q. Mechanism and Kinetic Study of Cyclodextrin Use to Facilitate NO2 Absorption in Sulfite Solutions. Environmental Science & Technology, 2022, 56(12): 7696~7706

[3] Zhang M J, Zhang S L*, Meng F Y, Hu M J, Wang Z Y, Zeng Y Q, Zhong Q. Catalytic peroxone process for low-temperature denitration with enhanced Ti-OOH formation on P-TiO2: Experimental, DFT, and semi-in-situ UV-Vis studies. Fuel, 2022, Accepted

[4] Wu H Z, Xiong W J, Wen S Y, Zhang X M, Zhang S L*. Homologue-paired liquids as special non-ionic deep eutectic solvents for efficient absorption of SO2 Chemical Communications, 2022, 58(56): 7801~7804

[5] Meng F Y, Zhang S L*, Zhang M J, Zhong Q. TiO2 with exposed {001} facets catalyzed peroxone reaction into ⋅O2- and⋅OH radicals for low temperature NO oxidation. Fuel, 2022, 314(15): 122748

[6] Zhang M J, Meng F Y, Zhang S L*, Zeng Y Q, Zhong Q. Sulfur-doping promoting peroxone reaction over TiO2 for highly effective NO oxidation at low temperature: Experimental and DFT studies. Chemical Engineering Journal, 2022, 429(1): 132475

[7] Lian Z, Liu S S, Li G J, Zhang S L*, Ma W H, Zhong Q. Using polyethylene glycol to facilitate the absorption of NO2 in sulfite solutions: Kinetics and mechanism. Journal of Hazardous Materials, 2022, 422(15):126825

[8] Xiong Y H, Li Y T, Wan S P, Yu Y, Zhang S L*, Zhong Q Ferrous-based electrolyte for simultaneous NO absorption and electroreduction to NH3 using Au/rGO electrode, Journal of Hazardous Materials, 2022, 430(15): 128451

[9] Wang Y N, Li C L, Wang S P, Zhang C, Li Z Y, Zhang S L*, Zhong Q.  ZIF-67-derived ultrathin Co-Ni layered double hydroxides wrapped on 3D g-C3N4 with enhanced visible-light photocatalytic performance for greenhouse gas CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10(4): 108119

[10] Xie J H, Li M Y, Wu Z H, Zeng Y Q, Zhang S L*, Liu J, Zhong Q. Effect of pre-oxidation process on V2O5/AC catalyst for the selective catalytic reduction of NOx with NH3. Environmental science and pollution research international, 2022, 29: 13534~13540

[11] Wang Y N, Zhang C, Zeng Y Q, Cai W, Wan S P, Li Z Y, Zhang S L*, Zhong Q. Ag and MOFs-derived hollow Co3O4 decorated in the 3D g-C3N4 for creating dual transferring channels of electrons and holes to boost CO2 photoreduction performance [J]. Journal of Colloid and Interface Science, 2022, 609: 901~909

[12] Wang J B, Wang Y N, Li G J, Yu M Y, Zhang S L*, Zhong Q. Formation of flaky carbon nitride and beta-Indium sulfide heterojunction with efficient separation of charge carriers for enhanced photocatalytic carbon dioxide reduction. Journal of Colloid and Interface Science, 2022, 611: 71~81

[13] Meng F Y, Zhang S L*, Zhang M J, Zhong Q. The mechanism of Ce-MCM-41 catalyzed peroxone reaction into •OH and •O2– radicals for enhanced NO oxidation. Molecular Catalysis 2022, 518: 112110

[14] Yang B Zeng YQ, Zhang M J, Meng F Y, Zhang S L*, Zhong Q. Highly efficient K-doped Mn-Ce catalysts with strong K-Mn-Ce interaction for toluene oxidation. Journal of Rare Earths, 2022, Accepted. 

[15] Huang L, Zeng Y Q, Gao Y B, Wang H, Zong Y H, Chang Z F, Zhang S L*, Han P, Yu Y.  Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO. Journal of Physics and Chemistry of Solids, 2022, 163: 110566

[16] Li M Y, Zeng Y Q, Zhang S L*, Ren Y J, Deng L F, Zhong Q. Inhibition effect of naphthalene on V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR of NOx. Fuel, 2022, 322(15): 123157

[17] Zeng Y Q, Lyu F Y, Wang Y N, Zhang S L*, Zhong Q, Zhong Z X. New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3. Molecular Catalysis, 2022, 525: 112356

 

2021年

[1]  Meng F Y, Zhang S L*, Zeng Y Q, Zhang M J, Zhong Q, Li Y T. Promotional effect of surface fluorine on TiO2: Catalytic conversion of O3 and H2O2 into ⋅OH and ⋅O2- radicals for high-efficiency NO oxidation. Chemical Engineering Journal, 2021, 424(15): 130358

[2]  Meng F Y, Guo L N, He J Y, Wang Z Y, Ma Z G, Zeng T Q, Zhang S L*, Zhong Q. V2O5-(NH4)2V6O16⋅1.5H2O composite catalysts as novel platforms for high-efficiency catalytic ozonation of NO under low temperature. Journal of Physics and Chemistry of Solids, 2021, 155: 110112

[3]  Lian Z, Zhu C Y, Zhang S L*, Ma W H, Zhong Q. Study on the synergistic oxidation of sulfite solution by ozone and oxygen: Kinetics and mechanism. Chemical Engineering Science, 2021, 242(12): 116745

[4]  Zeng Y Q, Wang Y N, Hongmanorom P, Wang Z G, Zhang S L*, Chen J T, Zhong Q. Kawi S. Active sites adjustable phosphorus promoted CeO2/TiO2 catalysts for selective catalytic reduction of NOx by NH3 [J]. Chemical Engineering Journal, 2021,409 (1): 128242

[5]  Zeng Y Q, Haw K G, Wang Z G, Wang Y N, Zhang S L*, Hongmanorom P, Zhong Q. Kawi S. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu–Ce interaction for efficient toluene oxidation. Journal of Hazardous Materials, 2021, 404:124088

[6]  Yang B, Zhang M J, Zeng Y Q, Menfg F Y, Zhang S L*, Zhong Q. Promotional effect of surface fluorine species on CeO2 catalyst for toluene oxidation. Molecular Catalysis, 2021, 512: 111771

[7]  Zhu C Y, Li G J, Lian Z, Wan Z W, Huang R, Zhang S L*, Zhong Q. Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO2 for photocatalytic NO removal under visible light. Separation and Purification Technology, 2021, 276: 119362.

[8]  Li G J, Huang R, Zhu C Y, Guo J, Zhang S L*, Zhong Q. Effect of oxygen vacancies and its quantity on photocatalytic oxidation performance of titanium dioxide for NO removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126156.

[9]  Li G J, Guo J, Hu Y Y, Wang Y N, Wang J B, Zhang S L*, Zhong Q. Facile synthesis of the Z-scheme graphite-like carbon nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative removal of nitric oxides under visible light. Journal of Colloid and Interface Science, 2021, 588(62):110~121.

[10]  Wang J B, Wang Y N, Li G J, Xiong Y H, Zhang M J, Zhang S L*, Zhong Q. Sodium doped flaky carbon nitride with nitrogen defects for enhanced photoreduction carbon dioxide activity. Journal of Colloid and Interface Science, 2021, 588(62):110-121.

[11]  Wu Z H, Li D D, Chen H, Zhang S L*, Zhong Q. Engineering application of desulfurization and denitrification comprehensive purification technology for activated coke, Environmental Progress & Sustainable Energy, 2021, 40(5): 13642

[12]  Huang L, Zeng Y Q, Chang Z F, Zong Y H, Wang H, Zhang S L*, Yu Y. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3. Molecular Catalysis, 2021, 506: 111565.

[13]  Hu M R, Meng F Y, Li N, Zhang S L*, Ma J Q.Insight Into the CuOx Interacts with Oxygen Vacancies on the Surface of Black-TiO2 for NO Oxidation. Catalysis Letters, 2021, 151: 1-11

 

2020年

[1] Wu Z H, Chen H, Wan Z D, Zhang S L*, Zeng Y Q, Guo H W, Zhong Q*, Li X H, Han J Y, Rong W L. Promotional Effect of S Doping on V2O5-WO3/TiO2 Catalysts for Low-Temperature NOx Reduction with NH3. Industrial & Engineering Chemistry Research, 2020, 59: 15478.

[2] Zeng Y Q, Wu Z H, Guo L N, Wang Y N, Zhang S L*, Zhong Q*. Insight into the effect of carrier on N2O formation over MnO2/MOx (M = Al, Si and Ti) catalysts for selective catalytic reduction (SCR) of NOx with NH3. Molecular Catalysis: 2020, 488: 110916.

[3] Wang Y N, Zhen W L, Zeng Y Q, Wan S P, Guo H W, Zhang S L*, Zhong Q*. In-situ self-assembly of Zirconium metal–organic frameworks onto ultrathin carbon nitride for enhanced visible light-driven conversion of CO2 to CO. Journal of Materials Chemistry A: 2020, 8: 6034.

[4] Meng F Y, Guo L N, Zou H C, Zhu B M, Zhou F Y, Zeng Y Q, Han J Y, Yang J, Zhang S L*, Zhong Q*. Mechanism study on TiO2 inducing ·O2- and ·OH radicals in O3/H2O2 system for high-efficiency NO oxidation. Journal of Hazardous Materials:2020,399:123033.

[5] Li X H, Wu Z H, Zeng Y Q, Han J Y, Zhang S L*, Zhong Q*.Reduced TiO2 inducing highly active V2O5 species for selective catalytic reduction of NO by NH3. Chemical Physics Letters: 2020, 750: 137494.

[6] Li G J, Wang Y N, Huang R, Hu Y Y, Guo J, Zhang S L*, Zhong Q*. In-situ growth UiO-66-NH2 on the Bi2WO6 to fabrication Z-scheme heterojunction with enhanced visible-light driven photocatalytic degradation performance. Colloids and Surfaces A: 2020, 603: 125256.

[7] Lian Z, Guo L N, Zhang S L*, Xiong Y H, Meng F Y, Zeng Y Q, Zhong Q*. Using excess O3 to facilitate the NO2 absorption in a sulfite solution: Process conditions and mechanism. Fuel Processing Technology: 2020, 206: 106457.

[8] Guo L N, Meng F Y, Zeng Y Q, Jia Y*, Qian F P, Zhang S L*, Zhong Q. Catalytic ozonation of NOx into HNO3 with low concentration ozone over MnOx-CeO2/TiO2: two-phase synergistic effect of TiO2. Molecular Catalysis: 2020, 493: 111095.

[9] Meng F Y, Zhang M J, Zhou F Y, Zou H C, Zhu B M, Zeng Y Q, Zhang S L*, Zhong Q*. CrOx anchored on the black-TiO2 surface via organic carboxylic acid ligand and their catalysis in oxidation of NO. Catalysis Letters. Accepted.

[10] Zeng Y Q, Haw K G, Wang Z G, Wang Y N, Zhang S L*, Hongmanorom P, Zhong Q*, Kawi S*. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation. Journal of Hazardous Materials: 2020, 404: 124088.

[11] Zeng Y Q, Haw K G, Wang Y N, Zhang S L*, Wang Z G, Zhong Q, Kawi S. Recent progress of CeO2-TiO2 based catalysts for selective catalytic reduction of NOx by NH3. ChemCatChem. Accepted

[12] Zeng Y Q, Wang Y N, Zhang S L*, Zhong Q*. Partial substitution of magnesium in lanthanum manganite perovskite for NO oxidation: The effect of substitution sites. Journal of Colloid and Interface Science: 2020, 580: 49.

[13] Huang L, Zong T H, Wang H, Chang Z F, Zhang S L*, Han P. Effect of neodymium addition on the plate-type V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO. Reaction Kinetics, Mechanisms and Catalysis, 2020, Accepted

 

2019年

[1] Zeng Y Q, Song W, Wang Y N, Zhang S L*, Zhong Q. Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: The role of Fe3+ ions. Journal of Hazardous Materials, 2019, 383: 121212.

[2] Wang Y N, Guo L N, Zeng Y Q, Guo H W, Wan S P, Ou M, Liao K, Zhang S L*, Zhong Q. Amino-assisted NH2-UiO-66 anchored on porous g-C3N4 for enhanced visible-light-driven CO2 reduction. ACS Applied Materials & Interfaces, 2019,11(34): 30673-30681.

[3] Zeng Y Q, Wang Y N, Meng Y H, Zhang S L*, Zhong Q. The effect of preparation method on oxygen activation over Pt/TiO2 catalysts for toluene total oxidation. Chemical Physics Letters, 2019, 730: 95-99.

[4] Zeng Y Q, Wang Y N, Song F J, Zhang S L*, Zhong Q. The effect of CuO loading on different method prepared CeO2 catalyst for toluene oxidation. Science of The Total Environment, 2019: 135635.

[5] Wu Z H, Zeng Y Q, Song F J, Zhang S L*, Zhong Q. Active sites assembly effect on CeO2-WO3-TiO2 catalysts for selective catalytic reduction of NO with NH3. Molecular Catalysis, 2019, 479: 100-108.

[6] Huang R, Zhang S L*, Ding J, Meng Y H, Zhong Q, Kong D S, Gu C J. Effect of adsorption properties of phosphorus-doped TiO2 nanotubes on photocatalytic NO removal. Journal of Colloid and Interface Science, 2019, 553(1): 647-654.

[7] Zeng Y Q, Song W, Wang Y N, Meng Y H, Song F J, Zhang S L*, Zhong Q. The utilization of dye wastewater in enhancing catalytic activity of CeO2-TiO2 mixed oxide catalyst for NO reduction and dichloromethane oxidation. Chemosphere, 2019, 235: 1146-1153.

[8] Li X H, Meng F Y, Zhang S L*, Zhong Q. The effect of polyethylene glycol modification on CrOx/TiO2 catalysts for NO oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019(578): 123588.

[9] Meng F Y, Zhang S L*, Zhong Q. CrOx assembled at the oxygen vacancies on black-TiO2 for NO oxidation. Molecular Catalysis, 2019, 473: 62-69.

[10] Li X H, Yu Y, Zhang S L*, Zhong Q. Synergetic effects of surface free Co3O4 species on catalytic oxidation of NO over cerium-cobalt solid solution. Journal of Dispersion Science and Technology, 2019, 1645024 .

[11] Wang Y N, Zeng Y Q, Zhang S L*, Zhong Q. Synthesis of 3D hierarchical rose-like Bi2WO6 superstructure with enhanced visible light-induced photocatalytic performance. The Journal of The Minerals, Metals & Materials Society, 2019, 71(6): 2112~2119.

[12] Wang Y N, Chen X Y, Wang Q Y, Zeng Y Q, Liao K, Zhang S L*, Zhong Q. Novel 3D hierarchical bifunctional NiTiO3 nanoflower for superior visible light photoreduction performance of CO2 to CH4 and high lithium storage performance. Energy, 2019, 169(15): 580~586.

[13] Song W, Zeng Y Q, Wang Y N, Zhang S L*, Zhong Q, Wang T X, Wang X M. Photo-induced strong active component-support interaction enhancing NOx removal performance of CeO2/TiO2. Applied Surface Science, 2019, 476: 834~839.

[14] Wang Y N, Zeng Y Q,Wan S P, Zhang S L*, Zhong Q. Construction of octahedral BiFeWOx encapsulated in hierarchical In2S3 core@shell heterostructure for visible-light-driven CO2 reduction. Journal of CO2 Utilization, 2019, 29: 156~162.

 

2018年

[1] Zeng Y Q, Wang Y N, Zhang S L*, Zhong Q. Study on the NH3-SCR performance and reaction mechanism of cost-effective and environment-friendly black TiO2 catalyst. Physical Chemistry Chemical Physics, 2018, 20: 22744~22752.

[2] Wang Y N, Zhang S L*, Zhong Q. In situ fabrication of 3D octahedral g-C3N4/BiFeWOx composite for highly selective CO2 photoreduction to CO under visible light. ChemCatChem, 2018, 10: 2578~4585.

[3] Xiong Y H, Zhong Q, Ou M, Cai W, Wan S P, Zhang S L*. Efficient inhibition of N2O during NO absorption process using CuO&(NH4)2SO3 mixed solution. Industrial & Engineering Chemistry Research, 2018, 57: 13010~13018.

[4] Zhao W Y, Li Z Q, Wang Y, Fan R R, Zhang C, Wang Y, Guo X, Wang R, Zhang S L*. Ce and Zr Modified WO3-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysts, 2018, 8: 375~384.

[5] Guo L N, Han C Y, Zhang S L*, Zhong Q, Ding J, Zhang B Q, Zeng Y Q. Enhancement effects of ·O2- and ·OH radicals on NOX removal in the presence of SO2 by using an O3/H2O2 AOP system with inadequate O3 (O3/NO molar ratio=0.5) . Fuel, 2018, 233: 769~777.

[6] Wang Y N, Zeng Y Q, Chen Y Y, Wang Q Y, Wan S P, Wang D Y, Cai W, Zhang S L*, Zhong Q. Tailoring shape and phase formation: rational synthesis of single-phase BiFeWOx nanooctahedra and phase separated Bi2WO6-Fe2WO6 microflower heterojunctions and visible light photocatalytic performances. Chemical Engineering Journal, 2018, 351(1): 295~303.

[7] Han C Y, Zhang S L*, Guo L N, Zeng Y Q, Li X H, Shi Z C, Zhang Y, Zhang B Q, Zhong Q. Enhanced catalytic ozonation of NO over black-TiO2 catalyst under inadequate ozone (O3/NO molar ratio =0.6). Chemical Engineering Research and Design, 2018 136: 219~229.

[8] Wang Y N, Zeng Y Q, Chen Y Y, Wang Q Y, Guo L N, Zhang S L*, Zhong Q. One-step hydrothermal synthesis of novel 3D BiFeWOx/Bi2WO6 composite with superior visible-light photocatalytic activity. Green Chemistry, 2018, 20, 3014~3023.

[9] Jiang D, Zhang S L*, Zeng Y Q, Zhong Q. Active site of O2 and its improvement mechanism over Ce-Ti catalyst for NH3-SCR reaction. Catalysts, 2018, 8: 336~350.

[10] Zeng Y Q, Wang Y N, Zhang S L*, Zhong Q, Rong W L, Li X H. One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3: active sites and reaction mechanism. Journal of Colloid and Interface Science, 2018, 524: 8~15.

 

出版专著和教材

《化工原理》第四版(国家级规划教材)