目录
硕士报考志愿采集    更新日期:2021年2月1日
姓 名 权浩 性 别
出生年月 1985年3月 籍贯 湖北襄阳
民 族 汉族 政治面貌 党员
最后学历 博士研究生 最后学位 工学博士
技术职称 教授 导师类别 硕士生导师
导师类型 校内 兼职导师
行政职务 Email quanhao@njust.edu.cn
工作单位 南京理工大学自动化学院 邮政编码 210094
通讯地址 南京市玄武区孝陵卫街200号
单位电话
个人主页
指导学科
学科专业(主) 0808|电气工程 招生类别 硕士 所在学院 自动化学院
研究方向

 

本人长期以来聚焦于人工智能和电力系统交叉学科方面的研究工作,致力于解决分布式电力系统不确定性管理和联合优化运行等关键科学问题,专注于下一代电网和智能计算理论及创新技术应用研究。

本研究团队的具体研究方向如下:

1. 不确定量化

2. 概率预测

3. 可再生能源优化集成

4. 综合能源系统

5. 人工智能在电力系统中的应用

计划招收硕士研究生,博士研究生若干名。欢迎对人工智能、电力系统方向感兴趣的海内外学生加入。

 

工作经历

2018.09~   至今     南京理工大学,自动化学院电气工程系,教授;

2014.10~2018.08   新加坡科技研究局,智能电网实验中心,研究科学家。

教育经历

2011.01~2014.08   新加坡国立大学 电气与计算机工程,工学博士;

2008.09~2010.12   华中科技大学 水利水电工程,工学硕士

2004.09~2008.07   华中科技大学 水利水电工程,工学学士。

获奖、荣誉称号

 

2020年亚太电力与能源国际学术会议(APPEEC)最佳论文奖;

2020年IEEE CCCSC应用超导学术年会“最佳青年科学家奖”;

2019年江苏省“双创计划”高校创新类双创博士;

2015年新加坡科技研究局智能电网实验中心电网操作员资历;

2011-2014年新加坡国立大学4年博士全额奖学金。 

 

社会、学会及学术兼职

(一)国际会议组委会情况:

1. 论文出版主席&分会主席,(Publication Chair & Session Chair) 2018 IEEE International Conference on Innovative Smart Grid Technologies (ISGT Asia), May 22-25, 2018, Singapore.

2.专题主席,(Special Session Chair) 2019 IEEE International Conference on Innovative Smart Grid Technologies (ISGT Asia), May 21-24, 2019, Chengdu, China.

3.分会主席,(Session Chair) 2020 IEEE Asia-Pacific Power and Energy Engineering Conference (APPEEC), Sept. 20-23, 2020, Nanjing, China.

4.分会主席,(Session Chair) 2020 IEEE中国超导专业委员会(CCCSC)应用超导学术年会,Dec. 19-21, 2020, Huzhou, China.

(二)IEEE PES组委会和会员情况

1.组委会成员(Committee Member):2018 IEEE Power & Energy Society (PES) Singapore Chapter, Committee Member (2018 IEEE PES新加坡分会,骨干成员)

2.会员(Member):IEEE Member and IEEE PES Member, 2018年至今

科研项目

代表性项目列表:

1.中国国家自然科学基金,项目号:51907090,2020-2022,主持

2.新加坡国家研究基金和能源市场管理局项目,Advanced Solar Power Forecasting for Safe and Reliable PV Grid Integration in Singapore--PV Inverter Modelling and Performance Testing,2018-2020,主持

3.校自主科研资助项目,项目号:30919011292,2019-2021,主持

4.新加坡电网公司和新加坡科技研究局智能电网实验中心合作项目,Test-bedding of Microgrid,2016-2017,参与

5.新加坡科技研究局研究所间合作项目(ICES-SIMTech),Investigation on Forecasting with Disaggregated PV Data for Grid Integration at Distribution Level,2016-2016,主持

6.新加坡科技研究局智能电网实验中心研究项目,Short-Term Solar Irradiance Forecasting Using EPGC Data,2015-2015,主持

发表论文

代表性期刊论文:

[1] H. Quan, D. Srinivasan, and A. Khosravi, “Short-term load and wind power forecasting using neural network-based prediction intervals,” IEEE Transactions on Neural Networks and Learning Systems, vol.25, no.2, pp.303-315, Feb. 2014. (ESI 高被引论文)

[2] H. Quan, D. Srinivasan, and A. Khosravi, “Particle swarm optimization for construction of neural network-based prediction intervals,” Neurocomputing, vol. 127, pp. 172-180, Mar. 2014.

[3] H. Quan, D. Srinivasan, and A. Khosravi, “Uncertainty handling using neural network-based prediction intervals for electrical load forecasting,” Energy, vol. 73, pp. 916-925, Aug. 2014.

[4] H. Quan, D. Srinivasan, A. M. Khambadkone and A. Khosravi, “A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy resources,” Applied Energy, vol. 152, pp. 71-82, Aug. 2015.

[5] H. Quan, D. Srinivasan, and A. Khosravi, “Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 9, pp. 2123-2135, Sept. 2015.

[6] H. Quan, D. Srinivasan and A. Khosravi, “Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: a comparative study,” Energy, vol. 103, pp. 735-745, May. 2016.

[7] D. Yang, H. Quan, V. R. Disfanic and L. Liu, “Reconciling solar forecasts: Geographical hierarchy,” Solar Energy, vol.146, pp. 276–286, April 2017.

[8] D. Yang, H. Quan, V. R. Disfanic and Carlos D. Rodríguez-Gallegos, “Reconciling solar forecasts: Temporal hierarchy,” Solar Energy, vol.158, pp. 332–346, Dec. 2017.

[9] W. Zhang, H. Quan and D. Srinivasan, “Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination,” Energy, vol.160, pp. 810-819, Oct. 2018.

[10] W. Zhang, O. Gandhi, H. Quan, Carlos D. Rodríguez-Gallegos and D. Srinivasan, “A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and EV coordination,” Applied Energy, vol.229, pp. 96-110, Nov. 2018.

[11] W. Zhang, H. Quan and D. Srinivasan, “An improved quantile regression neural network for probabilistic load forecasting,” IEEE Transactions on Smart Grid, vol.10, no.4, pp. 4425-4434, Jul. 2019.

[12] H. Quan and D. Yang, “Probabilistic solar irradiance transposition models,” Renewable and Sustainable Energy Reviews, vol.125, pp. 1–10, June. 2020.

[13] H. Quan, A. Khosravi, D. Yang and D. Srinivasan, “A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids,” IEEE Transactions on Neural Networks and Learning Systems, vol.31, no.11, pp. 4582-4599, Nov. 2020.

[14] W. Zhang, H. Quan*, O. Gandhi, D. Srinivasan, R. Rajagopal and C. W. Tan, “Improving Probabilistic Load Forecasting using Quantile Regression NN with Skip Connections,” IEEE Transactions on Smart Grid, vol.11, no.6, pp. 5442-5450, Nov. 2020.