目录
硕士报考志愿采集    更新日期:2024年10月27日
姓 名 孙正杰 性 别
出生年月 1991年8月 籍贯 安徽宣城市
民 族 汉族 政治面貌 中国共产党党员
最后学历 博士研究生 最后学位 理学博士
技术职称 副教授 导师类别 硕士生导师
导师类型 校内 兼职导师
行政职务 Email zhengjiesun@njust.edu.cn
工作单位 南京理工大学数学与统计学院 邮政编码
通讯地址
单位电话
个人主页 https://zhengjiesun.github.io/
指导学科
学科专业(主) 0701|数学 招生类别 硕士 所在学院 数学与统计学院
研究方向

散乱数据拟合,数值逼近,无网格微分方程数值解,保结构算法

工作经历

2018.12-2020.12 香港浸会大学 数学系  香江学者博士后

教育经历

2013.9-2018.6  复旦大学 数学科学学院  应用数学  直博

获奖、荣誉称号

2020年江苏省双创博士

2018年香江学者

社会、学会及学术兼职

中国工业与应用数学学会会员,中国数学会会员,美国数学会评论员

科研项目

主持国家自然科学基金1项, 江苏省自然科学基金1项

发表论文
  • W.W. Gao, J.C. Wang, Z.J. Sun*, G. Fasshauer, Quasi-interpolation for high-dimensional function approximation, Numerische Mathematik, 156:1855–1885, 2024 (arXiv:2409.14278 )

  • Z.J. Sun*, L. Ling, A high-order meshless linearly implicit energy-preserving method for nonlinear wave equations on Riemannian manifolds, SIAM Journal on Scientific Computing, 2024

  • Z.J. Sun, L. Ling, R. Zhang*, Learning PDEs from data on closed surfaces with sparse optimization, Communications in Computational Physics, Accepted, 2024. (arXiv:2405.06199)

  • Z.J. Sun, Q.J. Gao*, Energy-preserving schemes for conservative PDEs based on periodic quasi-interpolation methods, Commun. Nonlinear Sci. Numer. Simul., 131, 107831, 2024.

  • Z.J. Sun, Y.Y. Gao*, High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations, Numerical Algorithms, 93:1719-1739, 2023.

  • Z.J. Sun, S.L. Zhang*, A radial basis function approximation method for conservative Allen-Cahn equations on surfaces, Appl. Math. Letters, 143:108634, 2023.

  • S.L. Zhang, Z.J. Sun*, A. Kumar, Meshless symplectic and multi-symplectic scheme for the coupled nonlinear Schrödinger system based on local RBF approximation, Comput. Math. Appl., 134:16-32, 2023.

  • Z.J. Sun*, Y.Y. Gao, A meshless quasi-interpolation method for solving hyperbolic conservation laws based on the essentially non-oscillatory reconstruction, Int. J. Comput. Math., 100(6):1303-1320, 2023.

  • Z.J. Sun, L. Ling*, A kernel-based meshless conservative Galerkin method for solving Hamiltonian wave equations, SIAM J. Sci. Comput., 44(4):A2789-2807, 2022.

  • Z.J. Sun, W.W. Gao, R. Yang*, A convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEs, J. Sci. Comput., 93(2):37, 2022.

  • Z.J. Sun*, A conservative scheme for two-dimensional Schrödinger equation based on multi-quadric trigonometric quasi-interpolation approach, Appl. Math. Comput., 423, 2022, 12pp.

  • Y.Y. Gao, Z.J. Sun*, Multi-symplectic quasi-interpolation method for the KdV equation, Comput. Appl. Math., 41(3):112, 2022, 17pp.

  • Z.J. Sun, Z.M. Wu, W.W. Gao*, An iterated quasi-interpolation approach for derivativeapproximation, Numer. Algorithms, 85:255-276, 2020.

  • Z.J. Sun*, Multi-symplectic quasi-interpolation method for Hamiltonian partial differential equations, J. Comput. Phys., 395:125-143, 2019.

  • W.W. Gao, Z.J. Sun*, High-order numerical solution of time-dependent differential equations with quasi-interpolation, Appl. Numer. Math., 146:276-290, 2019.

  • Z.J. Sun*, A meshless symplectic method for two-dimensional nonlinear Schrödinger equations based on radial basis function approximation, Eng. Anal. Bound. Elem., 104:1-7, 2019.

  • Z.J. Sun, Z.M. Wu*, Meshless conservative schemes for multivariate Hamiltonian partial differential equations, J. Sci. Comput., 76:1168-1187, 2018.

  • Z.J. Sun, W.W. Gao*, A energy-momentum conserving scheme for Hamiltonian wave equation based on multiquadric trigonometric quasi-interpolation, Appl. Math. Model., 57:179-191, 2018.

  • Z.J. Sun*, Conservative or dissipative quasi-interpolation method for evolutionary partial differential equations, Eng. Anal. Bound. Elem., 96:78-83, 2018.

  • Z.J. Sun, W.W. Gao*, A meshless scheme for Hamiltonian partial differential equations with conservation properties, Appl. Numer. Math., 119:115-125, 2017.

出版专著和教材

《数据科学中的拟插值方法》,高文武,吴宗敏,孙正杰,周旋著